史进伟, 郭朝勇, 刘红宁
(军械工程学院基础部,河北 石家庄 050003)
摘 要:为实现枪弹外观缺陷自动检测,提出一种基于BP神经网络的枪弹外观缺陷自动识别与分类方法。首先针对枪弹外观缺陷图像特点,从形状、颜色、纹理提取类别差异明显的缺陷特征向量,作为神经网络的输入,以提高分类效果;然后通过经验和实验验证确定神经网络结构及参数,并分析传统BP算法在枪弹外观缺陷分类应用中的不足,通过优化BP算法以提高网络分类性能。实验表明:优化BP算法能够有效分类枪弹外观缺陷测试样本,识别率达到92.1%,与传统BP算法相比,提高了收敛速度,并表现出较好的准确性和鲁棒性,能够更好满足枪弹外观缺陷自动检测要求。
关键词:枪弹外观缺陷;特征提取;BP神经网络;识别与分类
中图分类号:TP391.4;TJ411;TJ06;TP274+.2 文献标志码:A 文章编号:1674-5124(2013)04-0026-05
Identification and classification of bullet surface defect based on BP neural network
SHI Jin-wei, GUO Chao-yong, LIU Hong-ning
(Department of Basic Courses,Ordnance Engineering College,Shijiazhuang 050003,China)
Abstract: In order to achieve automatic detection of bullet surface defect, a new method is proposed for automatically identifying and classifying the bullet surface defects on the basis of BP neural network. Firstly, according to the property of bullet surface defects, the distinct defect feature vector is extracted as the
Key words: bullet surface defect; feature extraction; BP neural network; identification and classification